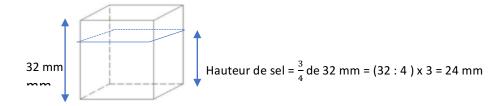
5èmes - MATHS pour le vendredi 10 avril - classes de 5A-5C-5D-

- 1) Corrigez les exercices de la semaine dernière avec la correction qui suit.
- 2) A la suite de la feuille de leçon « VOLUME » de la semaine dernière, recopiez proprement les trois cadres rouges de ce document.
- 3) Apprendre/ revoir la leçon
- 4) Cherchez les exercices 47 p 161, 50 p 161, 85 p 165 et 94 p167.
- 5) Pensez à faire le QCM sur les volumes qui est en ligne sur pronote depuis jeudi dernier!

Envoyez-moi cette semaine l'ex 94 p 167 en photo, proprement rédigé, en détaillant votre démarche (avant vendredi soir !) (faites des phrases).

Un devoir maison sera à faire pendant les vacances... Il sera publié vendredi.

Correction de l'Ex 26 p 159



Volume de sel dans la salière :

Le sel occupe un volume en forme de pavé droit

- de longueur 32 mm
- de largeur 32 mm
- de hauteur 24 mm (voir dessin)

Donc V = longueur x largeur x hauteur V = 32 x 32 x 24 $V = 24 576 mm^3$

Conversions (puisque l'on vous demande le résultat en cm³)

 $24 576 \text{ mm}^3 = 24,576 \text{ cm}^3$ <u>Le sel occupe un volume de 24,576 cm³.</u>

Tableau de conversion

km ³	hm ³	dam ³		m ³			dm ³			cm ³		mm ³
				kL	hL	daL	L	dL	cL	mL		
				1	0	0	0 1	0	0	O 1		

A savoir:

• 1 m³ = volume d'un grand carton qui fait 1m de long, 1 m de large et 1 m de haut (on peut se cacher à plusieurs dans ce grand carton)

 $1 \text{ m}^3 = 1000 \text{ Litres}$

• 1 dm^3 = volume d'un cube qui fait 1dm de long, 1 dm de large et 1dm de haut

= volume d'un cube qui fait 10 cm de long, 10 cm de large et 10 cm de haut (c'est le cube en plastique que j'ai en classe)

 $1 \text{ dm}^3 = 1 \text{ Litre}$

• 1 cm³ = volume d'un cube qui fait 1 cm de long, 1 cm de large et 1cm de haut (c'est comme un petit dé à jouer)

 $1 \text{ cm}^3 = 1 \text{ mL}$

• 1 mm³ = volume d'un petit cube qui fait 1 mm de long, 1 mm de large et 1mm de haut (juste 1 larme fait déborder ce cube !)

Correction de l'Ex 30 p 159 (attention, on vous demandait 2 méthodes de calcul)

Première méthode (la plus simple et rapide)

Volume du beurre entier : $V_b = 11.5 \times 6.5 \times 4$ car c'est celui d'un pavé droit.

 $Vb = 299 \text{ cm}^3$

Volume d'un morceau : $V_m = 299 : 2$ car un morceau est la moitié du pavé

 $V_{\rm m} = 149,5 \, {\rm cm}^3$

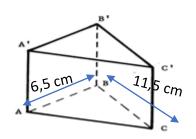
Chaque morceau fait 149,5 cm³

Deuxième méthode

Chaque morceau de beurre est en forme de prisme à base triangulaire.

La base du prisme est le triangle ABC.

C'est un triangle rectangle en B.



Rappel = Volume d'un prisme = aire de la base x hauteur du prisme

Aire du triangle ABC, rectangle en B: Haute

Aire = (base x hauteur): 2

Aire = $(11,5 \times 6,5)$: 2

Aire = $37,375 \text{ cm}^2$

Hauteur du prisme :

Il s'agit de AA'

hauteur = 4 cm

Donc volume du morceau de beurre :

 $V = 37,375 \times 4$

V = 149,5 cm³ Chaque morceau fait 149,5 cm³ (même résultat que tout à l'heure)

Correction Ex 36 p 159

Pour savoir quel sac doit choisir Mathilde , il faut connaître le volume de la poubelle.

La poubelle est un cylindre de diamètre 26,5 cm.

Donc son rayon est: 26.5:2=13.25 cm.

Sa hauteur est 55 cm.

Volume d'un cylindre

V = aire de la base x hauteur

 $V = \pi \times 13,25 \times 13,25 \times 55$

 $V \approx 30 335 \text{ cm}^3$

<u>Conversion</u>: $30 \ 335 \ cm^3 = 30$, $335 \ dm^3 = 30$, $335 \ L$

Conclusion: Mathilde peut acheter des sacs de 30L.

(Ceux de 50 L seront beaucoup trop grands et ceux de 20 L beaucoup trop petits ... mais encore faut-il qu'elle les trouve en magasin ... pas si facile par les temps qui courent ...)

Correction Ex 45 p 160

Écrivons la formule du volume de la pyramide :

V = (aire de la base x hauteur de la pyramide) : 3 90 = (B x 7,5) : 3

je cherche le nombre qui se cache entre les parenthèses : 90 = ?:3 ? = 90x3 C'est 270

$$270 = (B \times 7.5)$$

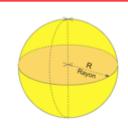
B = $270 : 7.5$

 $B = 36 \text{ cm}^2$

- La base de cette pyramide est inconnue. Nous la noterons B
- La hauteur de la pyramide est 7,5 cm.
- Le volume est connu : 90 cm³

Conclusion : L'aire de la base de la pyramide vaut 36 cm²

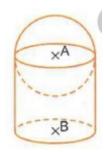
Correction Ex 58 p 160



Volume d'une sphère = $\pi \times rayon \times rayon \times rayon$

on peut écrire
$$V = \frac{4}{3}\pi \times R^3$$

L'observatoire est à séparer en deux parties : Le cylindre + la demi-sphère



Volume du cylindre : son rayon est 4,5:2=2,25m

 V_1 = aire de la base x hauteur

 $V_1 = \pi \times 2,25 \times 2,25 \times 3,5$

 $V_1 \approx 55,7 \text{ m}^3$

Volume de la demi-sphère :

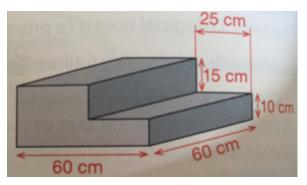
 $V_2 \approx \frac{4}{3} \times \pi \times rayon \times rayon \times rayon : 2$ On divise par deux car c'est

 $V_2 \approx \frac{3}{3} \times \pi \times 2,25 \times 2,25 \times 2,25 : 2$ la moitié d'une sphère

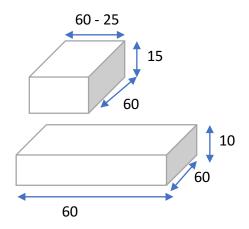
 $V_2 \approx 23,86 \, \text{m}^3$

Volume de l'observatoire : $V = V_1 + V_2 \approx 55,7 + 23,86$ donc $\underline{V} \approx 79,56 \text{ m}^3$

Exercice 77 p164



Peut se décomposer en :



On peut décomposer le solide comme ci-dessus.

Calcul du volume de la marche du bas

 $V_1 = 60 \times 60 \times 10$

 $V_1 = 36\,000\,\text{cm}^3$

Calcul du volume de la marche du haut

 $V_2 = 60 \times 15 \times (60-25)$

 $V_2 = 60 \times 15 \times 35$

 $V_2 = 31 500 \text{ cm}^3$

Volume total:

 $V = V_1 + V_2$

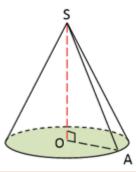
V = 36 000 + 31 500

 $V = 67 500 \text{ cm}^3$

Le volume de la marche est de 67 500 cm³.

LE CÔNE

Un cône de révolution est un solide comme celui-ci :



S est le sommet du cône Le disque vert est la base du cône [SO] est la hauteur du cône

Volume du cône = (<u>aire de la base</u> x hauteur) : 3 Volume du cône = (π x rayon x rayon x hauteur) : 3