MATHS - 3A-3C- Travail à faire dans la semaine du 25 au 30 Mai -

- Corriger les exercices de la semaine dernière avec la correction ci-dessous (p 1 à 4)
- Lire le cours de ce document (p 5 à 8) NOUVEAU CHAPITRE à classer.
 (vous avez aussi le paragraphe 3 page 28 du livre)
- Pour tous: exercices 16 p 30, 64 p 33, 66 p 33, 70 p 33, 74 p 33
- Pour ceux qui demandent une seconde générale : 92 p 36 , 101 p 37 et 102 p 37

Envoyez-moi votre travail. Merci et bonne semaine.

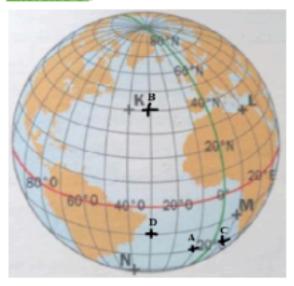
Exercice 1:

Rappel: Coordonnées d'un point sur une sphère : M (Longitude ; Latitude). Le point M a pour coordonnées géographique 20° Est et 45° Nord. Cela se note: M (20°E ; 45° N).

P (40° O; 0°) S (0°; 90° S) V (40° O; 60° N) Q (20° E; 40° S) U (0°; 20° N) Y (80° E; 20° N)

N (0°; 90° N)

Exercice 2:


La Nouvelle Orléans : (90° O ; 30° N)

Sao Paulo : (45° O ; 23° S) Londres : (0° ; 50° N) Durban : (30° E ; 30° S) Le Caire : (30° E ; 30° N)

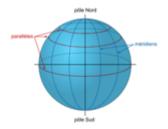
Saint-Pétersbourg : (30° E ; 60° N)

Dacca : (90° E ; 23° N) Shanghai : (120° E ; 30° N).

Exercice 3:

Les points A et C sont situés sur le même parallèle donc ils ont la même latitude.

Les points B et D sont situés sur le même méridien donc ils ont la même longitude.


Exercice 4:

Départ : (49° N ; 3° Ouest)

1) Il navigue en restant sur le même parallèle donc sa latitude ne bouge pas : A(49°N ; 15°O). Ensuite, il reste sur le même méridien donc sa longitude ne change pas et B(40° N ;15°O). Le marin a effectué 9° vers le sud (49-40) et 12° vers l'Ouest (15 – 3)

Donnée nécessaire : rayon de la terre = 6400 km Longueur d'un méridien (demi-cercle)

> $C = rayon \times \pi$ $C = 6400 \times \pi$ $C \approx 20107 \text{ km}$

Parcourir un méridien correspond à parcourir 180 degrés (Nord et sud) de latitude.

Donc pour connaitre la longueur correspondant à 1 degré :

 $20\ 107\ /\ 180 \approx 111,7\ km$

longueur correspondant à <u>9 degrés</u> :

 $111,7 \times 9 = 1005 \text{ km}$

Le 49 ème parallèle fait environ 26 400 km et correspond à 360 degrés de longitude.

Donc pour connaitre la longueur correspondant à 1 degré :

 $26\ 400\ /\ 360 \approx 73.3\ km$

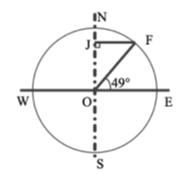
longueur correspondant à 12 degrés : 73,3 x 12 = 880 km

Distance parcourue par le marin : 1005 + 880 = 1885 km

2) Mille nautique : unité correspondant à la distance entre deux points de la Terre ayant même longitude et dont la latitude diffère d'un soixantième de degré.

1 mille = 1/60 de degré sur un méridien 60 milles = 1 degré sur un méridien ≈ 111,7 km (vu à la question 1)

Distance en milles	60	?
Distance en km	111,7	1885


Distance parcourue par le marin : ? = $1885 \times 60 : 111,7$

Distance parcourue par le mari	n ≈ 1013 milles nautiques

Exercice 5 (donnée : le rayon de la terre vaut environ 6400 km

1) Longueur de l'équateur :

$$Eq = diamètre \times \pi$$

 $Eq = 6400 \times 2 \times \pi$
 $Eq \approx 40 212 \text{ km}$

2)

• Le rayon du 49^{ème} parallèle est JF.

$$\widehat{IOF} = 90 - 49$$

$$\widehat{IOF} = 41^{\circ}$$

OJF est un triangle rectangle en J donc $sin(\widehat{JOF}) = \frac{JF}{OF}$ $sin(41) = \frac{JF}{6400}$ car OF = rayon de la terre

$$sin(41) \times 6400 = JF$$

JF $\approx 4198,78 \text{ km}$

• Longueur du 49^{ème} parallèle

$$L = diamètre \times \pi$$

$$L = 2 \times JF \times \pi$$

$$L \approx 2 \times 4198,78 \times \pi$$

$$L \approx 26382 \, km$$

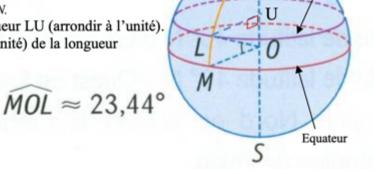
3) Vancouver (Canada) (122°W 49°N) et Embi (Kazakhstan) (58°E 49°N) sont sur le même parallèle et sont <u>diamétralement opposées</u> car 122 + 58 = 180.

4) Calcule la distance Vancouver-Embi si l'on suit le 49^{ème} parallèle.

Comme les deux villes sont diamétralement opposées, on devra parcourir la moitié du 49^{ème} parallèle.

Soit
$$d \approx 26382:2$$

$$d \approx 13\,191\,\mathrm{km}$$


la distance Vancouver-Embi est d'environ 13 191 km

Exercice 6

La Terre est assimilée à une boule de centre O et de rayon 6370 km. Le tropique du Cancer est un parallèle de centre U le long duquel le soleil passe au zénith lors du solstice d'été.

Pour info : La latitude de ce parallèle est environ 23,44°N.

- a. Sachant que OU ≈ 2509 km, calculer la longueur LU (arrondir à l'unité).
- **b.** Calculer une valeur approchée (arrondie à l'unité) de la longueur du tropique du Cancer.

N

Tropique

du Cancer

a) LOU est un triangle rectangle en U, donc je peux utiliser le théorème de Pythagore :

$$LU^2 + OU^2 = LO^2$$

$$LU^2 + 2509^2 = 6370^2$$

$$LU^2 = 6370^2 - 2509^2$$

$$LU = \sqrt{34\ 281\ 819}$$

b) Périmètre du cercle de centre U et de rayon LU :

$$L = diamètre \times \pi$$

$$L = 2 \times LU \times \pi$$

$$L \approx 2 \times \sqrt{34281819} \times \pi$$

$$L \approx 36788 \, km$$

Le tropique du Cancer a une longueur d'environ 36 788 km

Inéquations

Définitions

Définition

Résoudre une inéquation consiste à trouver toutes les valeurs pour lesquelles l'inégalité est

Comme pour les équations, les inéquations peuvent comporter une ou plusieurs inconnues. Elles sont composées souvent de deux membres : un membre de gauche et un membre de droite.

Exemple 1:

$$2x + 7 < 3$$

x est l'inconnue. Le membre de gauche est 2x+7 . Le membre de droite est 3. Résoudre cette inéquation consiste à répondre à la question suivante :

« Quelles sont toutes les valeurs de x pour lesquelles on a 2x + 7 < 3 ? »

Par exemple, 4 n'est pas solution car $2 \times 4 + 7 = 15 > 3$.

Par contre, -5 est solution. En effet, $2 \times (-5) + 7 = -3 < 3$.

Il existe très souvent une infinité de solutions (cela marche ici pour tous les nombres strictement inférieurs à -2). On utilise des inégalités pour exprimer l'ensemble des solutions.

II) Propriétés

A) Addition et soustraction

Propriété

Lorsqu'on ajoute (ou soustrait) un même nombre à chaque membre d'une inégalité, on obtient une inégalité de même sens et on ne modifie pas les solutions.

Exemple 2:
$$3x + 7 < 2x - 5$$

$$3x + 7 + 5 < 2x - 5 + 5$$

$$3x + 12 < 2x$$

Les solutions de l'inéquation 3x + 12 < 2x sont identiques à celles de l'inéquation 3x + 7 < 2x - 5. Le fait d'ajouter 5 n'a pas changé le sens de l'inégalité.

Exemple 3 :

$$3x + 7 < 2x - 5$$

$$3x + 7 - 7 < 2x - 5 - 7$$

$$3x < 2x - 12$$

Les solutions de l'inéquation 3x < 2x - 12 sont identiques à celles de l'inéquation 3x + 7 < 2x - 5 . Le fait de retrancher 7 n'a pas changé le sens de l'inégalité.

B) Multiplication et division

Propriété

Lorsqu'on multiplie (ou divise) les deux membres par un nombre strictement positif, on obtient une inégalité de même sens et on ne modifie pas les solutions.

Exemple 4:

$$\frac{1}{2}x + 1 < 5$$

$$\left(\frac{1}{2}x + 1\right) \times 2 < 5 \times 2$$

Les solutions de l'inéquation x+2 < 10 sont identiques à celles de l'inéquation 0.5x+1 < 5. Le fait de multiplier par 2 (nombre strictement positif) n'a pas changé le sens de l'inégalité.

Exemple 5:

$$\frac{3x+6}{3} < \frac{9}{3}$$

 $\frac{3x+6}{3} < \frac{9}{3}$

Les solutions de l'inéquation x+2 < 3 sont identiques à celles de l'inéquation 3x+6 < 9. Le fait de diviser par 3 (nombre strictement positif) n'a pas changé le sens de l'inégalité.

Propriété

Lorsqu'on multiplie (ou divise) les deux membres par un nombre strictement négatif, on obtient une inégalité de sens contraire et on ne modifie pas les solutions.

Par exemple, on a bien 2 < 3 mais lorsqu'on multiplie les deux membres par -1, on a alors -2 > -3. (Ceux qui en doutent peuvent placer -2 et -3 sur une droite graduée.)

Exemple 6:

$$2 - \frac{1}{3}x < -x + 4$$

$$\left(2 - \frac{1}{3}x\right) \times (-3) > (-x + 4) \times (-3)$$

$$-6 + x < 3x - 12$$

Les solutions de l'inéquation -6+x<3x-12 sont identiques à celles de l'inéquation 2-(1/3)x<-x+4 . Le fait de multiplier par -3 (nombre strictement négatif) a changé le sens de l'inégalité.

Exemple 7:

$$-x-7 < 2-x$$

 $\frac{-x-7}{-1} > \frac{2-x}{-1}$
 $x+7 > -2+x$

Les solutions de l'inéquation x+7>-2+x sont identiques à celles de l'inéquation -x-7<2-x . Le fait de diviser par -1 (nombre strictement négatif) a changé le sens de l'inégalité.

6

III) Représentation graphique des solutions

On représente souvent les solutions d'une inéquation sur une droite graduée. Dans les représentations graphiques qui suivront, la « zone verte » représentera l'ensemble des solutions.

Remarque

Lorsqu'on représente les solutions sur une droite graduée :

- si le crochet est tourné vers les solutions (donc vers la zone verte), alors le nombre correspondant fait partie des solutions.
- si le crochet est tourné vers l'extérieur, alors ce nombre ne fait pas partie des solutions.
- 1) Résolution de l'inéquation 2x + 4 > 3x 5 puis représentation graphique des solutions :

$$2x + 4 > 3x - 5$$

$$2x - 3x + 4 > -5$$

$$2x - 3x > -5 - 4$$

$$-x > -9$$

$$\frac{-x}{1} < \frac{-9}{1}$$

Les solutions de cette inéquation sont les nombres strictement inférieurs à 9. 9 ne fait pas partie des solutions donc le crochet sera tourné vers l'extérieur de la zone verte.

2) Résolution de l'inéquation $x+7 \le 13$ puis représentation graphique des solutions :

$$x + 7 \le 13$$

$$x \le 13 - 7$$

$$x \le 6$$

Les solutions de cette inéquation sont les nombres inférieurs ou égaux à 6. 6 fait partie des solutions donc le crochet sera tourné vers la zone verte.

3) Résolution de l'inéquation $3x-4\geq 12$ puis représentation graphique des solutions : $3x-4\geq 12$

$$3x - 4 > 12$$

$$3x \ge 12 + 4$$

$$3x \ge 16$$

$$x \ge \frac{16}{3}$$

Les solutions de cette inéquation sont les nombres supérieurs ou égaux à $\frac{16}{3}$. $\frac{16}{3}$ fait partie des solutions donc le crochet sera tourné vers la zone verte.

4) Résolution de l'inéquation 2x+3>15 puis représentation graphique des solutions : $2x+3>15\,$

$$2x + 3 > 15$$

$$2x > 15 - 3$$

$$x>\frac{12}{2}$$

Les solutions de cette inéquation sont les nombres strictement supérieurs à 6. 6 ne fait pas partie des solutions donc le crochet sera tourné vers l'extérieur de la zone verte.